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The magnetization vector deviates from the equilibrium orientation directed along a 
magnetic field during magnetic fluid motion in the field. A whole number of hydrodynamic 
effects which are examined systematically in [I], e.g., is due to the interaction between 
the nonequilibrium component of the magnetization and the external magnetic field. In par- 
ticular, this mechanism exerts substantial influence on the hydrodynamic stability of shear 
flows. Thus, it is shown in [2, 3] that there are specific hydrodynamic instabilities in 
plane-parallel Poiseuille and Couette flows in a homogeneous magnetic field, whose governing 
parameters are the field magnitude and orientation. 

The influence of a magnetic field on the stability of Couette flow between rotating 
cylinders is investigated in this paper in the narrow gap approximation. The governing mech- 
anism of the instability is the classical Taylor mechanism. The selection of the field orien- 
tation in the formulation of the problem is due to the structural features of magnetic-fluid 
seals of rotating shafts, where Couette flow is realized in a narrow gap. To a significant 
degree the expansion of the domain of magnetic fluid sealers is related to the rise in the 
ultimately achievable values of the shaft rotation velocities. However, construction of high- 
speed seals is a complex engineering problem. Such phenomena as magnetic fluid ejection from 
the gap being sealed by centrifugal forces, heating of the liquid by dissipative heat libera- 
tion, constrain the allowable velocities of shaft rotation [4]. Moreover, in the opinion of 
the authors of [5], instabilities of circular fluid motion in the gap, particularly the Taylor 
instability, exert influence on the seal characteristics. According to classical theory, 
Taylor vortices originate when the modified Reynolds numbers reaches 41.17 [6]. For a gap 
width Ar ~ 0.2 mm, shaft diameter r ~ 20 mm, and kinematic viscosity coefficient ~/p ~ 3"10 -5 
m/sec 2 the linear velocity of Shaft surface motion is of the order of 60 m/sec at the time 
of instability origination. Dissipative heating reduces the threshold Reynolds number [7] 
and the threshold value of the linear velocity for the estimate presented above to 25 m/sec. 
Crisis changes in the friction moment and power losses are observed in experiments [5] for 
velocities of such an order. In this connection, a study of the stability of the Couette 
flow of a magnetic fluid is of practical interest. 

The equation of motion of an incompressible magnetic fluid has the form [I, 8] 

pv = --VP + ~V 2v + ~oMoVH + F. (1) 

Here H is the field intensity, M0(H, T) is the equilibrium magnetization, 

F = ~oV• + Vo(M'.V)H (2) 

is the bulk force due to dynamic interaction between the fluid and the field. The deviation 
of the magnetization M from the equilibrium value M0e (e = H/H) is determined by the equation 

M! -- = M Moe = - - •  - -  ~ H ~  ~ •  (3)  

where  Q = V•  ~lt = ~tl (H, T), ~• = •177 T) a r e  c o e f f i c i e n t s  of  dynamic s u s c e p t i b i l i t y  of  
t he  m a g n e t i c  f l u i d .  E q u a t i o n s  ( 1 ) - ( 3 )  must  be s u p p l e m e n t e d  by t h e  c o n t i n u i t y  and m agne to -  
statics equations 

V . v  = 0, V •  = 0, V . B  = 0, B = ~o(H + M). (4 )  

We write the boundary conditions in the form 

V It=r1 = 01 i~ = o l r l  i , ,  V { ~=~ = 02 i ,  = o~r~ i~, (5 )  
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where r is the radial coordinate, i~ is the azimuthal direction of the cylindrical coordinate 
system. The magnetic field in the gap possesses rotational symmetry: At any point it has just 
r and z components whose distribution is independent of the azimuthal coordinate ~. Since 
the magnetic flux has a radial direction, we take as the simplest idealization that the mag- 
netic field is directed just along the radius. The field distribution satisfying the Maxwell 
equations (4) when the fields induced by the fluid are neglected is written in this case in 
the form H r = Hirrl/r, where Hlr is the field near the inner cylinder. We also provide for 
the possibility of the existence of a homogeneous field directed along the cylinder axis, 
which permits comparing the representation of the influence on seal dynamics to the z compo- 
nent of the field. Therefore, within the framework of the assumptions made, the field in 
(I)-(3) should be considered known 

H = H l r ( r l / S i r +  Hz iv  (6 )  

Here ir, i z are the unit direction of the cylindrical coordinate system. By virtue of the 
rotational symmetry of the field and the boundary conditions, fluid motion with rotational 
symmetry can be considered. The simplest motion of this kind is circular v~ v~ In this 
case the bulk force (2) has only a ~-component which, taking account of the field distribu- 
tion (6), we write as 

F~ = ~o2 OrO (M • H),  - -  --~. (M • H)~, 

.... ~ {Or ~ v ~ ) i 
where ~o(M X H)z = zqreT~-gTr r ; ~]r =-%- ~o•177 H~ is the rotational viscosity coefficient. Taking 

account of these relationships, the projections of (I) have the form 

PW=FW ko,- 7 ; 
Op I pv0= 1 
0--7 = -7" - -  7 ~%M~ 

(7) 

(8) 

where 

= n + 

Therefore, the influence of the magnetic field on the circular fluid motion reduces to 
0 varies along the gap redetermining the viscosity coefficient. The effective viscosity ~e 

width since the r-component of the unit vector in the field direction and the field magnitude 
vary 

er = Hlrr l /Hr ,  H = V ~ / r  2 + H~. 

As follows from (7), the steady flow profile is described by the equation 

v ~ ~ d r  
- -  = B + A, (9 )  

r 

in which the constants A and B are determined from the boundary conditions (5). The integral 
taken in (9) is difficult in the general case because of the complex dependence of the ef- 
fective viscosity on the independent variable r, however, for certain particular cases (9) 
can be represented in final form. If the "strong" field condition (H >> 15 kA/m) is satisfied 
at any point of the gap, the rotational viscosity reaches saturation and is constant in the 
whole fluid volume nr = nrs = const. In this case a flow with the profile 

o , , l _ ~ / ~ + S b [ l n ( t + b ) _ l ~ ( ~ / r ~ + b ) ]  

is realized in the gap, where a = r l / r = ;  b=Hz2/[H~r(1+S)]; 8=~1r8/~ 1. 

In "weak" fields (H << 15 kA/m) the constant is the coefficient of dynamic susceptibility. 
Taking this condition into account •215 = r 

v ~ In (t + S) - -  In (I  + Sr21/r2 ) 
- 7  = ~1 + ( ~  - -  ~1) in (t + s) - In (1 + sa  ~) ' S = ~0•  

When Ar = r2  -- r l  << r ,  t h e  c h a n g e  i n  f i e l d  m a g n i t u d e ,  and  t h e r e f o r e ,  t h e  r o t a t i o n a l  v i s -  
c o s i t y  i n  t h e  gap  a l s o  c a n  b e  n e g l e c t e d .  I n  a " n a r r o w "  g a p ,  t h e r e f o r e  a p l a n e - p a r a l l e l  C o u e t t e  
flow 
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v ~ = (v 1 + v2)/2 + (v2 - -  v~) (r - -  r , ) l A r ,  r ,  = (rl  + r2)/2 ( 1 0 )  

is realized for any field magnitude. 

The origination of more complex fluid flows with rotational symmetry of the Taylor vor- 
tex type is possible for certain cylinder rotation velocities in the magnetic fluid. Let us 
clarify the influence of the field on this process. We consider the development of small 
perturbations v(r, z) on the circular motion background. Substituting the solution in the 
form of the superposition v~ into the system (I)-(3), after a standard linearization 
procedure we obtain a system of equations for the small perturbations 

r,,,, ovo,-, , : . , ,)  

(0v,, 2~o~ ) 
P ~ - ~ '  r i~ = - - V P + n V 2 V , . + F . , , i ,  (12) 

which  a r e ,  r e s p e c t i v e l y ,  t h e  ~ - p r o j e c t i o n  and t h e  p r o j e c t i o n  on t h e  r--z p l a n e  o f  t h e  e q u a -  
t i o n  o f  m o t i o n  f o r  t h e  p e r t u r b a t i o n s  v• = Vri r ~ -  Vziz, U ~-  Yr �9 A p p l y i n g  t h e  o p e r a t i o n  Vx to  ( 1 2 ) ,  
we e l i m i n a t e  t h e  p r e s s u r e  

0 [2v~  V2 (13) p ~ (v x vA+  ~ UT-J'~ = (v x v.,.) + v X V.,.. 

S i n c e  Vl  s a t i s f i e s  t h e  c o n t i n u i t y  e q u a t i o n ,  i t  can  be  e x p r e s s e d  in  t e r m s  of  t h e  v e c t o r  p o t e n -  
t i a l  v• ---- VX(~i~) Therefore 

V • 1 7 7  - i~, V r = - - - ~ z  , v z = - - ; - ~ ( r ~ ) .  (14) 

The "narrow" gap condition is satisfied in seals; consequently, in what follows we limit 
ourselves to the examination of just this case. The sources due to the field in (11) and (13) 
equal to the accuracy of terms on the order of kr/r, 

02v 02v 2 02v 
F ~ =  ~r ( e . v ) 2  v = er ~ + 2e~ez ~ + ez -~a~, V • F.,, = - -  ~l~V4~0 iv,  

where  ~ r ,  e r ,  ez  a r e  c o n s t a n t s .  T a k i n g  t h e s e  r e l a t i o n s h i p s  i n t o  a c c o u n t ,  t h e  s y s t e m  ( 1 1 ) ,  
( 1 3 ) ,  and (14) t a k e s  t h e  f o l l o w i n g  f o r m  in  t h e  same a p p r o x i m a t i o n :  

Or Ov~ 
W ~ , .  = W v + n r - e ' v - ~ v ; ~ ( )  ~ P (15) 

0 2v ~ Or. ( 1 6 )  

�9 O~ O~ ( 1 7 )  
v r =  E ,  v==~7. .  

The profile of the unperturbed motion v ~ is here determined by the relationship (I0). The 
boundary conditions follow from the condition of disappearance of the perturbations on the 
layer boundaries 

O~ O~ ~ U r = r l , r  2 ~-~ Oz ~ r  r = r l , r  2 

As is seen from (15) and (16), the dynamical interaction results in anisotropy of the viscous 
forces in this case. The rotational viscosity affects the r--z- and azimuthal perturbation 
components differently. 

We seek the solution of the system (15), (16) in the form of normal periodic perturba- 
tions along the cylinder axis 

{v, , }  = {v~(r), ,=(r)} exp ( ikz  - -  gt) .  

An e i g e n v a l u e  p r o b l e m  f o l l o w s  f o r  t h e  p e r t u r b a t i o n  a m p l i t u d e s ,  and i s  r e d u c e d  to  d i m e n s i o n l e s s  
fo rm.  We t a k e  as  m e a s u r e m e n t  u n i t s  t h e  gap h a l f w i d t h  Ar /2  f o r  t h e  d i s t a n c e ,  t h e  a r i t h m e t i c  
a v e r a g e  o f  t he  c y l i n d e r  v e l o c i t i e s  (v2 -- v l ) / 2  f o r  t h e  a z i m u t h a l  v e l o c i t y  c o m p o n e n t ,  q /p  f o r  
t h e  s t r e a m  f u n c t i o n ,  and p h r 2 / 4 n  f o r  t h e  t i m e .  As a r e s u l t  we o b t a i n  

- - g v  a ik~= = V2Va -{- S(e.v)2v=; (19) 
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- -  aV~?o -- ik [(Re~ - -  Re~) + (Re 2 - -  Re~) 2 y] vJt6  = (t + S) V4~'~, (20)  

where 

follow for its determination. 
ditions 

S = - ~ - ;  R e ~ =  ~ ~ r , '  = ~  ~ ;  dy 

2 d 2 d 2 2. 2 ( r - - r , )  (~. V) 2 - -  2 i k e ~ e z ~ . k ~ ,  y =  �9 
er dY 2 ~ . Ar ' 

t h e  same n o t a t i o n  i s  u s e d  f o r  t h e  d i m e n s i o n l e s s  v a r i a b l e s ,  e x c e p t  f o r  t h e  r a d i a l  c o o r d i n a t e ,  
a l s o  f o r  t h e  d i m e n s i o n a l  v a r i a b l e s .  The o r i g i n  o f  t h e  d i m e n s i o n l e s s  r a d i a l  c o o r d i n a t e  y i s  
placed at the middle of the layer. In this case the boundary conditions (18) take the form 

v = ~  = d ~ / d y =  0 ~r Y =-----l- ( 2 ] )  

The influence of the magnetic field on the eigenvalue spectrum o of the problem (19)- 
(21) is governed by the parameter S, which depends on the field magnitude and the field orien- 
tation ~ = arctan (er/e z) relative to the cylinder axis. In the absence of a field (S = 0) 
the problem describes the behavior of perturbations in an ordinary viscous fluid. 

The problem was solved by the Galerkin method. The spectrum of two-dimensional perturba- 
tions in a resting plane-parallel layer of ordinary fluid was chosen as the set of basis func- 
tions. If we set Re~ = Re2 = S = 0 in (19) and (20), then the equations 

V2V(0) = __vv(O), V~(0) ~__~(0). (22) 

The normalized basis functions satisfy the orthogonality con- 

<o) (o), <~O)v2~) ) 

1 

where ~nl is the Kronecker delta, and <(...)>= S(...)dy,The subscripts take on positive in- 
--i 

teger values corresponding to the eigenvalues vi, Pi numbered in increasing order. The basis 
defined by (21) and (22) is used extensively to solve viscous fluid dynamics problems [9], as 
well as ferrohydrodynamics problems [3, 2], and is presented in [3], for example. We repre- 
sent the solution in the form of the series 

N--I M--1 
v ~ ~ (o) = ~ v ~ ,  ~ = ~ B ~  ). 

n ~ O  ~ 0  

After substitution of these relationships into (19) and (20), and scalar multiplication of 
the first equation by v~ ~ and the second by ~(0) and taking account of the orthogonality 

J 
conditions, we obtain a system of linear homogeneous equations to determine the expansion 
coefficients An, Bm 

[vz (1 + Se~) + Sk ~ ( e ~ -  e ~ ) -  ~] A t -  2~ke~e: E <v~)'v,> An - - i k  ~ < ~ v l >  B., = 0, 
n m (23)  

<[(Re~ --  ReD + (R~ - Re~) y] ~kv.~j> + {(1 + s)  ~j - ~] B5 = o. 
n 

The eigenvalues o of the coefficient matrix of the homogeneous system (23) were determined 
numerically by the Greenstadt method [~0]. The eigenvector corresponding to the eigenvalue 
with minimal real part was found by the inverse iteration method [11]. Computations were 
performed for M = N = 4, which yields an error no greater than 3% in the determination of 
the minimal eigenvalue; the accuracy was determined by comparison with checking computations 
for M = N = 8, when an increase in the number of basis functions has practically no influence 
on the lower eigenvalue. 

Let us discuss the results of the numerical investigation for the case when the outer 
cylinder is at rest, i.e., Re2 = 0. As Rel increases, the real part of the eigenvalue that 
is minimal in absolute value diminishes and changes sign for a certain Rel = R~(~, S, k), 
which indicates flow instability. Here if e ~ 0.90 ~ the imaginary part of the unstable mode 
is different from zero. Therefore, the Taylor instability is fluctuating in nature in an 
oblique magnetic field. In purely radial and axial fields (~ = 0.90 ~ ) the neutral perturba- 
tion decrements are real. In this case, the instability is monotonic in nature as in the 
absence of a field. Neutral curves R1(k) are presented in Fig. I for S and ~ (the numbers 
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I-3 on the left correspond to S = 0, 0.2, I and on the right ~ = 0; 45; 90~ The coordi- 
nates of the minimum on these curves represent the threshold Reynolds number RI, and the wave 
number k, of the threshold perturbation. 

Investigation of the influence of the field on the threshold characteristic was carried 
out in the parameter range 0 < S < I,--90 < ~ < 90 ~ It is seen from Fig. I that Rl, is prac- 
tically independent of the field orientation and can be approximated with a high degree of 
accuracy by the relationship RI, = 41;17 + 30 S, which we represent in the form 

RI~ Pvlar ~ T r = 4 i , i 7 "  
RI~ = i @ 0,73S = ~ ~0,73~r r,  

I t  hence  f o l l o w s  t h a t  t h e  t h r e s h o l d  i n s t a b i l i t y  can  be  d e t e r m i n e d  by u s i n g  a r e n o r m a l i z e d  
R e y n o l d s  number  Rl*  which  has  a f i x e d  v a l u e  i n  a f i e l d  o f  a r b i t r a r y  m a g n i t u d e  and o r i e n t a t i o n .  
R e n o r m a l i z a t i o n  i s  a c c o m p l i s h e d  by u s i n g  a c e r t a i n  e f f e c t i v e  v i s c o s i t y  

~e = ~  + 0,73qr (24) 

t h a t  depends  o n l y  on t h e  f i e l d  m a g n i t u d e  and i s  i n d e p e n d e n t  o f  i t s  o r i e n t a t i o n ,  i n s t e a d  of  
t h e  dynamic  v i s c o s i t y  c o e f f i c i e n t .  I t  d i f f e r s  f r o m  t h e  e f f e c t i v e  v i s c o s i t y  4g d e t e r m i n i n g  
t h e  e n e r g y  d i s s i p a t i o n  in  t h e  gap in  t he  c i r c u l a r  f l o w  mode.  The d e p e n d e n c e  o f  t h e  t h r e s h o l d  
wave number  on t h e  f i e l d  c h a r a c t e r i s t i c s  can  be  d e s c r i b e d  by  t h e  r e l a t i o n s h i p  

k ,  = 3 , 1 8 - - 0 , 5 S  cos2a .  

I f  t h e  f i e l d  d i r e c t i o n  a p p r o a c h e s  t h e  a x i a l ,  t h e n  t h r e s h o l d  w a v e l e n g t h  t ,  = 2 ~ / k ,  i n c r e a s e s .  
The r a d i a l  f i e l d  r e s u l t s  i n  a d i m i n u t i o n  o f  t , .  Fo r  ~ = 45 ~ t h e  f i e l d  does  n o t  a l t e r  t h e  
p e r t u r b a t i o n  w a v e l e n g t h .  I f  t h e  r e n o r m a l i z e d  w a v e l e n g t h  k = k / ( 1  -- 0 .16  S c o s  2~) i s  u s e d ,  
t h e  i n s t a b i l i t y  can  be  d e s c r i b e d  by a u n i v e r s a l  n e u t r a l  c u r v e  R l ( k )  whose f o r m  i s  i n d e p e n d e n t  
o f  t h e  f i e l d  c h a r a c t e r i s t i c s  and a g r e e s  w i t h  t h e  n e u t r a l  i n s t a b i l i t y  c u r v e  in  an o r d i n a r y  
v i s c o u s  f l u i d  ( c u r v e  1 i n  F i g .  1) .  

I n  an o b l i q u e  f i e l d  t h e  n e u t r a l  p e r t u r b a t i o n s  a r e  t r a v e l i n g  w a v e s .  T h e i r  p r o p a g a t i o n  
d i r e c t i o n  i s  o p p o s i t e  t o  t h e  d i r e c t i o n  of  t h e  f i e l d  z - c o m p o n e n t .  The d e p e n d e n c e  of  t h e  f r e -  
quency  of  f l u c t u a t i o n  o f  t h e  t h r e s h o l d  p e r t u r b a t i o n  i s  a p p r o x i m a t e d  w e l l  by t h e  r e l a t i o n s h i p  
Im~ =--0.16 S sin2~. 

Isoline patterns of the azimuthal velocity component and stream function are represented 
in Fig. 2 for ~ = 45 ~ (S = I, k = 2.5, Rel = 75, Re2 = 0) when the influence of the field on 
the perturbation structure is maximal. This influence is examined most clearly in the isoline 
pattern for v. As is seen, the line separating two convective cells passes obliquely to the 
layer. In the absence of a field, as well as in purely radial and axial fields, when the 
vortices being generated in the shear flow are stationary, this line is perpendicular to the 
layer boundaries. 

Let us discuss the results of investigating the influence of the field on the threshold 
characteristics when both cylinders rotate. Rotation of the outer cylinder is the same di- 
rection as the inner does not result in a qualitative change in the structure of the threshold 
perturbations. The form of the v and ~ isolines is analogous to that represented in Fig. 2. 
The change in the parameter Re2 is here also of slight influence on the threshold wavelength 
and vibration frequency. 

When the cylinders rotate in different directions in an ordinary fluid, the Taylor vor- 
tices develop in the domain of the gap between the inner cylinder and the fluid layer for 
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which v ~ = 0. The same vortex structure holds in purely radial and axial fields. As is seen 
from Fig. 3, where isolines are shown for the case ~ = 45 ~ , S = I, Rel = 110, Re2 = --100 the 
vortices in an oblique field penetrate the domain abutting on the outer cylinder. 

The dependence of Rl* on the renormalized Reynolds number Re2 = Re2/(1 + 0.73S) deter- 
mined by means of the rotational velocity of the outer cylinder is presented in Fig. 4. Curve 
5 corresponds to the case S = 0. Points for S = I, ~ = 45 ~ are marked with the shaded tri- 
angles A. This curve which demarcates the plane Rel-Re2 into two domains where the circular 
motion is stable (lower part of the plane) and unstable is universal in nature. Its shape is 
practically independent of the field characteristics. 

Therefore, the influence of the magnetic field on the threshold of Taylor instability 
occurrence in narrow gaps in the investigated range of external parameters can be described 
by introducing the effective viscosity coefficient defined by the relationship (24) into the 
modified Reynolds number in place of the dynamical viscosity coefficient. As in an ordinary 
viscous fluid, the instability in purely radial and axial fields is monotonic in nature, while 
in an oblique field it is vibrational. It should be noted that there are significant axial 
field gradients in seals, where the z-component of the field changes sign. This can cause 
generation of waves being propagated in opposite directions whose addition will result in 
stationary vortex formation. 

Origination of Taylor vortices is the first stage on the road to the passage of circular 
into turbulent motion as the Reynolds number increases. Because of the universality of the 
stability pattern of circular motion in the Rel, Re2 axes (see Fig. 4), it is expedient to 
denote the boundary of the different flow modes thereon. For this we use the data for an 
ordinary viscous fluid presented in [12]. The symbols 0 in Fig. 4 mark the Re for rz/r2 = 
1.135. As is seen, for such a relationship between the cylinder radii the data of [12] will 
lie on the curve 5 obtained in the narrow-gap approximation. Curve 4 is the boundary of sec- 
ondary wavy Taylor vortex formation, 2 is the boundary of the transition region to turbulent 
flow, I is the boundary of the turbulent flow domain for rl/r2 = 1.135, and 3 is the boundary 
of an abrupt change in the friction moment for rl/r2 = 1.176. As is seen, the development 
of turbulence and its associated growth of the friction moment starts for Reynolds numbers 
significantly exceeding the boundary of Taylor vortex formation (for the outer cylinder at 
rest). The Reynolds numbers achieved in modern seals lie below the boundary of turbulent 
mode origination. 
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Liquid flow under the conditions of the concurrent interaction of dissipative heat re- 
lease and a phase transition was investigated in [I, 2]. In this case a quasi-steady approxi- 
mation with respect to velocity and temperature was used, making it possible to determine the 
regions of the characteristic flow regimes: a complete phase transition, a regime of steady 
flow with the phase interface at an intermediate position, and a regime of hydrodynamic ther- 
mal explosion (HTE) [3]. 

Such an approach, presuming a sufficiently great heat of the phase transition and that 
the initial temperature and velocity distributions belong to the region of attraction of 
steady-state profiles, has a limited applicability. A clarification of the region of its 
applicability -- the problem of nonsteady analysis -- is discussed in the present paper. 

I. Statement of the Problem 

We Consider the Couette flow of a viscous incompressible liquid lying between two co- 
axial infinite cylinders; the inner one (with a radius r0) rotates while the outer one (with 
a radius r I) is stationary. The outer cylinder is cooled below the temperature T, of the 
phase transition, as a result of which a layer of solid material of thickness A = r, -- r0 is 
formed, where r, is the coordinate of the phase interface. The Arrhenius temperature depen- 
dence of the viscosity ~ = q0 exp (E/RT) is adopted, where E is the activation energy of the 
viscous flow, R is the universal gas constant, q0 is a preexponential factor, and T is the 
temperature. 

The system of equations of heat conduction and motion and the rheological equation can 
bewritten in the form 

�9 r < r , :  c l P l  ~ t  = El \a--~- + r Or ] " 

1 0 
(~r2), ~ = ~ r ~ ;  (1 2) 

= Olr---T 0-7 

r > r . :  csps~ = lz k Or ~ + "-F-Tr ]" (1 .3)  
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